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1 Introduction

The purpose of this work was to improve three dimensional images of biological specimens

stained with fluorescent probes taken with confocal scanning microscope. The article de-

scribes two approaches–an iterative deterministic deconvolution and maximum likelihood

estimator.

1.1 Acquiring the images

Three dimensional images are obtained from optical microscope by collecting a series of two

dimensional images focused at different planes through the specimen. Each optical section

shows the plain in focus plus contributions from out of focus plains, which obscures the

desired image.

Better images can be obtained by using a confocal scanning microscope. In confocal

scanning microscope only a small portion of the specimen is illuminated at a given time and

light from other points in the specimen is rejected by a small aperture in front of the detector,

but the contributions from out of focus plains are reduced but not completely eliminated.
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1.2 Operators and notations

Symbol meaning
(xD, yD, zD) Detector (image) position
(xs, ys, zs) Scan position
(x, y, z) Coordinates for a point in the specimen
λf Fluorescent light wave length
λ Excitation light wave length
d Distance of focus plane from the lens
sin(α) The numerical aperture of the lens
o(·) Object intensity
i(·) Recorded image brightness
h1() The point spread function of the lens at wave length λ
h2() The point spread function of the lens at wave length λf

h() The point spread function of the microscope
if () The fluorescent intensity distribution in the object space
I() The fluorescent image of if () through the lens
OTP () The optical transfer function of the microscope
T1() Optical transfer function of the lens at wave length λ
T2() Optical transfer function of the lens at wave length λf

(vx, vy, u) Optical coordinates
(s, t, w) Normalized frequencies
Tn1() Optical transfer function of the

lens at wave length λ in optical coordinates
Tn2() Optical transfer function of the

lens at wave length λf in optical coordinates
hn1() The point spread function of the

lens at wave length λ in optical coordinates
hn2() The point spread function of the

lens at wave length λf in optical coordinates

î(k)(x, y, z) Image of the reconstructed image at iteration k
ô(k)(x, y, z) The reconstructed image at iteration k
ε Arbitrary convergence criterion
γ(x, y, z) The step size of iteration k for point (x,y,z) in the object
A Half of the maximum allowed value of the object
p() Probability density
Y Incomplete data space
Z Complete data space
f : Z → Y Mapping between incomplete data space

and complete data space
θ Parameter vector to be estimated
Θ Parameters space
hatθ(k) Parameter vector estimation in iteration k
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L Log likelihood
Lid Incomplete log likelihood
Lcd Complete log likelihood

Q(o(1), o(2), ...| ˆo(1)
(k)

, ˆo(2)
(k)

, ...) Conditional expectation of the complete log
likelihood

η Arbitrary learning rate constant
Xlt Arbitrary parameters characterizing correlation of

neighboring source elements in the object
around element l

ō(l) Mean strength value of voxel l in the object
σl Standard deviation of source element l in the

object
⊗ Convolution operator

2 Optical transfer function and point spread function

of a confocal scanning fluorescent microscope

2.1 Optical system

The imaging property of a confocal scanning microscope that uses induced fluorescence is

different from that of one that uses transmitted or reflected light. This is because the

fluorescence is incoherent. Thus the bandwidth of its optical transfer function is twice as

large as that of a confocal coherent microscope.Moreover, the missing cone in the optical

transfer function for this microscope is smaller, and if the excitation and the fluorescence

wavelength is close, the missing cone disappear.

There are two possible configurations for the optical system. Simplified diagrams of both

are shown in Fig. 1. The optical transfer function calculations are identical for both, so

mathematical analysis will be given only for the one lens configuration.

Excitation light with wavelength λ that comes from a point source is reflected by half

mirror and focused by the lens at a distance d from the lens. The point in the specimen

space is denoted by coordinates x, y and z. The direction of the z axis is on the optical

axis. The distribution of a fluorescent object may be expressed as o(x − xs, y − ys, z − zs).
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Figure 1: Confocal optical path configuration - Up:one lens configuration. Down:two lens

configuration

Coordinates xs, ys and zs represents the scan position. The image of the induced fluorescence

is formed through the focusing lens, the half mirror, and a cut filter. Coordinates xD, yD

and zD denote the position of the image. The cut filter is inserted into the optical path to

block the excitation light. for simplicity assume that only fluorescence with wavelength λf

is allowed to pass through the filter. and that the a point detector is positioned at the origin

of the coordinate system of the image.
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2.2 Calculation of Optical transfer function

Following Shigeharu and Chusuke [1], let a complex amplitude of the point source image

reflected through the focusing lens at a wavelength of λ be h1(x, y, z), and let the same

amplitude at a fluorescence wavelength of λf be h2(x, y, z). Assume that the induced flu-

orescence at some object point is proportional to the distribution o(x − xs, y − ys, z − zs)

and to the incidence intensity of the excitation light at the same point. then the fluorescent

intensity distribution if (x, y, z), in the object space is:

if (x, y, z) = |h1(x, y, z)|2o(x − xs, y − ys, z − zs). (1)

Therefore the fluorescent image of this distribution through the focusing lens is:

I(xD, yD, zD, xs, ys, zs) =

∫∫∫ ∞

−∞

∣∣∣h2

(xD

M
− x,

yD

M
− y,

zD

M
− z

)∣∣∣2 |h1(x, y, z)|2

×o(x − xs, y − ys, z − zs) dx dy dz

(2)

where M is the magnification of the system. the point detector is placed at the origin of the

image coordinate system, and h2 is an even function therefore the detected fluorescence is

expressed as

I(0, 0, 0, xs, ys, zs) =

∫∫∫ ∞

−∞
|h2(x, y, z)|2|h1(x, y, z)|2o(x − xs, y − ys, z − zs) dx dy dz (3)

from Eq.3, the point spread function psf(x, y, z) for the microscope is expressed as

psf(x, y, z) = h(x, y, z) = |h2(x, y, z)h1(x, y, z)|2 (4)

The 3-D optical transfer function can be calculated with the 3-D fourier transform of the

point spread function from Eq.4.

OTF (fx, fy, fz) =

∫∫∫ ∞

−∞
|h2(x, y, z)|2|h1(x, y, z)|2exp(−2πi(xfx + yfy + zfz)) dx dy dz =

∫ ∞

−∞
[T1(fx, fy, z) ⊗ T2(fx, fy, z)]exp(−2πizfz) dz

(5)
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where fx, fy and fz are spatial frequencies in the x, y and z directions. and ⊗ denotes a

convolution. The functions T1 and T2 are 2-D optical transfer function with defocus and are

expressed as

T1(fx, fy, z) =

∫∫ ∞

−∞
|h1(x, y, z)|2exp(−2πi(xfx + yfy)) dx dy,

T2(fx, fy, z) =

∫∫ ∞

−∞
|h2(x, y, z)|2exp(−2πi(xfx + yfy)) dx dy.

(6)

By introducing the optical coordinates

vx =
2π

λ
x sin(α) ≈ 2π

λ

a

d
x, vy =

2π

λ
y sin(α) ≈ 2π

λ

a

d
y,

u =
2π

λ
z sin2(α) ≈ 2π

λ

(a

d

)2

z.

(7)

Where λ is the excitation light wavelength, sin(α) is the numerical aperture, a is the radius

of the exit pupil of the focusing lens, assuming the refractive index n = 1, and introducing

the normalized frequencies

s =
λ

sin(α)
fx, t =

λ

sin(α)
fy, w =

λ

sin2(α)
fz. (8)

The 2-D optical transfer function represented by T1 can be replaced with

Tn1(s, t, u) =

∫∫ ∞

−∞
|hn1(vx, vy, u)|2exp(−i(uxs + vyt)) dvx dvy (9)

Where hn1 is the complex amplitude of the point source represented in the optical coordi-

nates. Hopkins [2] calculated Tn1(s, 0, u) analytically. However, his approach involved a series

of Bessel functions converges slowly and it is time consuming. Later Stokseth [3] presented

an empirically derived analytic approximation of the optical transfer function to make the

calculation easy. According to this approximation, Tn1(s, 0, u) can take the following form

Tn1(s, 0, u) =

{
g1(s)

{
J1[ug2(s)]

ug2(s)

}
0 < s < 2

0 2 ≤ s
(10)
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where

g1(s) = 2(1 − 0.69s + 0.0076s2 + 0.043s3),

g2(s) = s − 0.5s2
(11)

and J1 is a Bessel function of the first kind of order 1.

In similar way the 2-D optical transfer function at the fluorescence wavelength Tn2 is

represented in the optical coordinates with λf as the fluorescence wavelength and hn2 the

complex amplitude. expressing λf = βλ leads to

hn2(vw, vy, u) = hn1

(
vx

β
,
vy

β
,
u

β

)
(12)

Hence from the similarity theorem of the Fourier transform we get the relationship between

Tn1 and Tn2.

Tn2(s, t, u) = Tn1

(
βs, βt,

u

β

)
(13)

By applying Eq. 9, 12 and 13 to Eq. 5 we can write it as

OTP (s, t, w) = F [hn1(vx, vy, u)|2] ⊗F [hn2(vx, vy, u)|2] (14)

in which the symbol F denotes a 3-D fourier transformation. Eq. 14 shows that the 3-D

optical transfer function for the confocal fluorescent microscope is represented by the convo-

lution of incoherent wide field microscope 3-D optical transfer functions at the wavelengths

of the excitation and fluorescence light. the incoherent wide field microscope 3-D optical

transfer functions itself is a convolution of the coherent 3-D optical transfer functions.

2.3 The optical transfer function bandwidth

From Eq. 14 we can see qualitatively how the bandwidth change for the 3-D optical transfer

function. The bandwidth of wide field microscope optical transfer function becomes nar-

rower as the wavelength of the fluorescence light becomes longer. When the wavelength of

the fluorescence is equal to the excitation wavelength, the confocal optical transfer function
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bandwidth is twice as wide as the wide field microscope bandwidth. When the fluores-

cence wavelength becomes longer, the bandwidth approach the bandwidth of the wide field

microscope. in that case a missing cone region appears.

3 Additive Deconvolution

The reconstruction is carried out by constrained iterative deconvolution, a purely deter-

ministic algorithm which is a modification to the Jansson-van-Cittert method of successive

convolution [4]. The correction step size for each voxel at each iteration is determined by a

quadratic form. This quadratic form has maximum at half the maximum value allowed for

the object γ(x, y, z) = 1 if oold(x, y, z) = A, and minimum at the maximum value allowed

for the object and at zero γ(x, y, z) = 0 if oold(x, y, z) = 2A or 0. The quadratic form of the

step size is disabling drastic corrections at the saturation and cutoff regions of the image,

were such corrections could spoil the estimation.

3.1 Algorithm

1. î(k)(x, y, z) = ô(k)(x, y, z) ⊗ h(x, y, z)

2. ô(k+1)(x, y, z) = ô(k)(x, y, z) + γ(x, y, z)[i(x) − î(k)(x)]

with γ(x, y, z) = 1 −
[

ô(k)(x,y,z)−A
A

]2

3. Apply constraints.

4. k=k+1.

5. Repeat 1–4 until max(|i(x, y, z) − î(k)(x, y, z)|) < ε

where ô(k)(x, y, z) is the reconstructed object of iteration k, î(k)(x, y, z) is the image of the

reconstructed object at iteration k and h(x, y, z) is the point spread function. A is half of

the maximum allowed value of the specimen or object, ε is an arbitrary convergence criterion

and γ(x, y, z) is the step size. The 3-D convolution at step 1 is implemented by FFT. At

step 3, prior knowledge about the specimen can be incorporated to the algorithm. In this
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article simulation the only constraint that was used was boundedness i.e.

ô(k)(x, y, z) ←



0 if ô(k)(x, y, z) < 0
2A ifô(k)(x, y, z) > 2A
ô(k)(x, y, z) else

The recorded image i(x, y, z) is used as an initial guess.

3.2 1D and 2D Simulation Results

The simulations tested several several convergence criterions and several objects smooth,sharp

bright and sharp dim. The first simulation checked the convergence as function of the stop-

ing condition. In Fig. 2 the system parameters (PSF, object) are showed. The results of the

simulation are showed in Fig. 3, 4 and 5. We can see for these figures that the algorithm

is very sensitive to the stoping condition ε. The range of good values is very small. If we

will choose a value too large, the improvement in the image will be minor were as if we will

choose a value too small the algorithm won’t converge at all. In addition the smaller ε is, or

the more iteration done, more artifacts will be introduced to the estimation. The artifacts

will be seen as bright and dark spots or grid on the background of the image. This can be

clearly seen in Fig. 5 as local minimums and maximums.

The second simulation checked different 2D objects that can be seen in Fig. 6, 8 and 10,

The algorithm results for the different objects are in Fig. 7, 9 and 11. for all the objects and

for ε = 10, 5 the algorithm didn’t converge but was stop after 100 iterations. For all objects

there is an improvement in the reconstructed image but also some artifacts were introduced

to the background. In the sharp and dim object, although the object is less blurred it is still

not easily separable from its background.
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Figure 2: 1D system parameters for sharp object

Figure 3: 1D additive deconvolution results ε = 5: convergence after two iterations.
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Figure 4: 1D additive deconvolution results ε = 2: convergence after six iterations

Figure 5: 1D additive deconvolution results ε = 1: did not converge and was stopped after

1000 iterations
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Figure 6: 2D system parameters for smooth object

Figure 7: 2D additive deconvolution results for smooth object: did not converge for ε = 10, 5

and was stopped after 100 iterations
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Figure 8: 2D system parameters for sharp and bright object

Figure 9: 2D additive deconvolution results for sharp and bright object: did not converge

for ε = 10, 5 and was stopped after 100 iterations
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Figure 10: 2D system parameters for sharp and dim object

Figure 11: 2D additive deconvolution results for sharp and dim object: did not converge for

ε = 10, 5 and was stopped after 100 iterations
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3.3 Article Simulation Results

The simulation was done on three different objects. a cross and a circle 200 nm apart and

with equal brightness, a cross and a circle 50 nm apart and with equal brightness and a cross

and a circle 200 nm apart with the cross strength of 1/10 from the circle strength. The first

simulation was applied to the case where the cross and the circle have equal strength, are

200 nm apart and without noise. The result of this simulation are in Fig. 12(left) from this

figure we can see that the out of focus contribution are greatly reduced, after 10 iterations

the objects are bright in the slice where they are in focus, and dim only in the slices or planes

immediately above and below. Some ringing artifacts are seen in the planes immediately

above and below where the object is in focus. in the same figure (right) the results for the

case when the cross and circle are 50 nm apart are shown. we can see that the out of focus

contribution from the two objects are reduced in only 10 iteration to one slice above and

below the location of the circle. The contribution to these two slices does not totally go

away even after 40 iterations. The cross, on the other hand, can only be seen at the second

and third planes.

Figure 13(left) shows the case where the cross have 1/10 the intensity of the circle. in the

recorded image, the contributions of the out of focus circle to the second panel outweigh the

in focus contribution from the cross. As the iteration progresses, the relative strength of

the cross increases. One plane above the cross, the contributions from the circle are quickly

outweighed by those of the cross. Although the algorithm is not able to resolve clearly the

two objects, it is capable of bringing out dim detail that could barely be seen in the recorded

image.

The algorithm was tested then in the presence of signal dependent poisson noise. the case

where the two objects are with equal intensity and 200 nm and 50 nm apart. for both cases

the SNR at the brightest region was set to 3.16(
√

10 corresponding to the mean intensity of

10 pixels per voxel). The results for the first case are on Fig. 13(right). The algorithm was

able to reduce the out of focus contributions to only the optical slices immediately above

and below the two objects. However, at the same time, the noise is amplified as in evidenced

by the salt and pepper noise in the reconstructed image.
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The results for the second case are shown in Fig. 14 In only 10 iterations, the out of focus

contributions of the circle are reduces to the slices above and below the plane where it is in

focus. Unlike the noiseless case, the out of focus contributions from the cross to the bottom

panel still shows even after 40 iterations. As in the previous case, the high frequency noise

grows as iteration progress.
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Figure 12: Additive algorithm results - without noise. Left: simulated cross and circle of

equal intensity 200 nm apart, the optical slices where the cross and circle lays marked X and

O respectively. the columns from left to right are the recorded image and the reconstruction

after 10,20,40 iterations. Right: simulated cross and circle of equal intensity 50 nm apart, the

optical slice where the circle lays marked O. the columns from left to right are the recorded

image and the reconstruction after 10,20,40 iterations
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Figure 13: Additive algorithm results - with and without noise. Left: without noise -

simulated cross and circle of 200 nm apart the cross intensity is 1/10 the circle intensity,

the optical slices where the cross and circle lays marked X and O respectively. the columns

from left to right are the recorded image and the reconstruction after 10,20,40 iterations.

Right: with poisson noise max. SNR=3.16 simulated cross and circle of equal intensity 200

nm apart, the optical slice where the circle lays marked O. the columns from left to right

are the recorded image and the reconstruction after 10,20,40 iterations
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Figure 14: Additive algorithm results - with and poisson noise max. SNR=3.16. Left:

simulated cross and circle of equal intensity 50 nm apart, the optical slice where the circle

lays marked O. the columns from left to right are the recorded image and the reconstruction

after 10,20,40 iterations.
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4 Likelihood approach

4.1 Likelihood function

We assume that the specimen density is a poisson process with intensity o(x, y, z) because of

the fluorescence emission. The output image is also poisson process with intensity o(x, y, z)⊗
h(x, y, z). The problem is to estimate the intensity of the specimen density given the output

image.

A poisson density defined as

p(n, λ(x, y, z)) =
λn(x, y, z)eλ(x,y,z)

n!
(15)

By dividing the specimen and image to voxels l=1..N with λl as the poisson process density

in voxel l. The probability of observing i(1), i(2), ..., i(N) in the image is

p(i(1), i(2), .., i(N) | o(1), o(2), ..., o(N)) =
N∏

l=1

[
1

i(l)!
(o ⊗ h)

i(l)
(l) e−(o⊗h)(l)

]
(16)

The a posteriori data likelihood probability ln[p(o(1), o(2), ...|i(1), i(2), ...)] is by Bayes rule

L(o(1), o(2), ...) = ln[p(i(1), i(2), ...|o(1), o(2), ...)] + ln[p(o(1), o(2), ...)] − ln[p(i(1), i(2), ...)].

by omitting the terms that don’t depend on o(1), o(2), ... we get

L(o(1), o(2), ...) = ΣN
l=1i(l)ln[(o ⊗ h)(l)] − ΣN

l=1(o ⊗ h)(l) + ln[p(o(1), o(2), ...)] (17)

Po(1),o(2),...(o(1), o(2), ..., o(N)) the probability density of the object intensity is unknown but

this term enable us to insert constraints to the algorithm. this article don’t specify the con-

straints they used but a previous article [5] used approximation for po(1),o(2),...(o(1), o(2), ...)

base on neighboring pixel correlation.

If the source element strengths o(l) are quantized hypothetically into indistinguishable

strength units (photons) and the total number M = Σlo(l) of the strength units is as-

sumed to be approximately fixed, the source (object) distribution may be characterized as a

random process in which M indistinguishable strength units distribute randomly over the N
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voxels, and each voxel has a probability pl(o(1), o(2), ...) of having o(l) strength units. That

means the a priori source information function can be expressed as

p(o(1), o(2), ...) =
M !∏
l o(l)!

N∏
l=1

[pl(o(1), o(2), ...)]o(l) (18)

pl(o(1), o(2), ...) is assumed to be a function of o(l) and the neighboring source element

correlation. This local correlation reflects the source strength continuity behavior and the

physical interaction correlation from an element to its neighboring elements.

Let Xlt be the parameters characterizing the correlation of neighboring source elements

around element l. The local correlation function pl(o(1), o(2), ...) can be expressed as

pl(o(1), o(2), ...) =
∏

t

exp

[
−1

2

Xlt

σlσt

(o(l) − ō(l))(o(t) − ō(t))

]
(19)

where t ∈ {l ± ∆} and ∆ covers the neighboring elements of element l. σl and σt are the

standard deviation of source elements l and t respectively, and ō(l) is the mean strength

value of voxel l.

The gaussian local correlation function in Eq. 19 incorporated the nearby source element con-

tinuity information and the physical interaction correlation information into the parameters

{Xlt} and the mean values {ō(l)}. The gaussian parameters Xlt,ō(l) and σl need to be chosen

arbitrary, a possible choice can be σ2
l = ō(l), Xl,l−2 = 0.1, Xl,l−1 = 0.5, Xl,l = 1, Xl,l+1 = 0.5,

Xl,l+2 = 0.1 and the mean value can be updated by ō(t) = o(k)(t) + 2η(o
(k)
t − o

(k−1)
t ) where η

is a learning rate constant.

For the minimization of the log likelihood we need to calculate the derivative of ln[p(o(1), o(2), ...)]

so from substituting Eq. 19 to Eq. 18 and derivating it we get

∂ln[p(o(1), o(2), ...)]

∂o(l)
=

(2o(l) − ō(l))

2σl

∑
t

−1

2

Xlt

σt

(o(t) − ō(t)) +
Xll

2σ2
l

(o(l) − ō(l))(3o(l) − ō(l)) + ln[o(l)] +
1

2σl

+ 1

(20)

.
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4.2 Expectation Maximization

The expectation maximization algorithm is based on the concept of an incomplete data space

Y , a complete data space Z and a mapping f : Z → Y between them [6].

The incomplete data space is the space Y in which measured data takes its values. in this

problem Y is the image i and the incomplete data log-likelihood is the likelihood function

we calculated in the previous subsection.

The complete data space Z is a hypothetical space that is contrived to accomplish two goals:

1) make the expectation and maximization steps of the algorithm analytically tractable. and

2) make the resulting computations required for the EM algorithm feasible for numerically

producing estimates. The complete data space for a given problem is not unique, and the

EM algorithm can be more or less complicated depending on the choice made.

The complete data space is larger than the incomplete data space in the sense that complete

data must determine incomplete data. There must be a known function f(·) that maps

complete data to incomplete data. This mapping function and the incomplete data y place

a constraint determined by f(z) = y, on the values that the complete data z may have.

denote the collection of parameters to be estimated by θ, and assume that θ ∈ Θ ⊆ R
n.

The parameters may be deterministic or random. We use maximum likelihood estimation

for deterministic parameters and maximum a posteriori probability estimation for random

parameters. for the optical sectioning problem the parameters to be estimated are the object

intensity o. and according to the previous section they are random variable, so we use the

maximum a posteriori estimation.

Two log likelihood functions are important for estimating the parameters θ from measured

data y ∈ Y when the EM algorithm is used. The incomplete data log likelihood Lid(θ) =

ln[py(Y |θ)]+ ln[p(θ)]. The maximum a posteriori probability estimate θ̂ ≡ θ̂(y) is the vector

of the incomplete data set y ∈ Y that maximizes the incomplete data log likelihood Lid(θ).

For the optical sectioning problem the incomplete likelihood function is the one that we

calculated in the previous subsection.

The second log likelihood that is important is the complete data log likelihood and it
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is defined by Lcd(θ) = ln[pz(Z|θ)] + ln[p(θ)]. θ̂ is not a maximizer of the complete data

log likelihood. Nevertheless, Lcd(θ) is important in the EM algorithm for determining θ̂

numerically.

The EM algorithm is iterative. Starting from an initial estimate θ̂(0) of the parameters,

a sequence of estimates θ̂(0), θ̂(1), θ̂(2), ... is produced for which the corresponding sequence

of incomplete data log likelihood is nondecreasing Lid(θ̂
(0)) ≤ Lid(θ̂

(1)) ≤ Lid(θ̂
(2)).... Two

steps are required at each stage of the iteration to reach the next stage, an expectation (E)

step and a maximization (N) step.

E-step. determines the conditional expectation of the complete data log likelihood,

Q(θ|θ̂(k)) = E[Lcd(θ)|y, θ|θ̂(k)] (21)

M-step. determines the stage k + 1 parameter estimate as the maximizer of Q(θ|θ̂(k)),

θ̂(k+1) = arg max
θ∈Θ

[Q(θ|θ̂(k))] (22)

The sequence {θ̂(k) : k = 1, 2, ...} that is defined by the E and M steps corresponding to the

sequence of incomplete data log likelihood {Lid(θ̂
(k)) : k = 1, 2, ...} is nondecreasing. The

proof can be found at the appendix.

Back to the optical sectioning problem. Let Lid(o(1), o(2), ..., o(N)) = L(o(1), o(2), ..., o(N))

and the complete data set be the concatenation of the object probability density and the im-

age intensity. The only terms of the log likelihood are those who depends on o(1), o(2), ..., o(N)

because others don’t affect the M-step. so we simply get the log likelihood of the object prob-

ability density.

Lcd = −ΣN
l=1o(l) + ΣN

l=1ln[o(l)]nl + ln[p(o(1), o(2), ...)] (23)

where nl is the true density of the object at pixel l.

E{Lcd} = −ΣN
l=1o(l) + ΣN

l=1ln[o(l)]E{nl|ôk(l), i(1), i(2), ..., i(N)} + ln[p(o(1), o(2), ...)] (24)
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the expectation expression E{nl|ok(l), i(1), i(2), ..., i(N)} is expressed by (see development

in the appendix)

E{nl|ôk(l), i(1), i(2), ..., i(N)} = ΣN
m=1

h(m − l)ôk(l)

(h ⊗ ôk)(m)
i(m) (25)

and the E-step is

Q(o(1), o(2), ...| ˆo(1)
(k)

, ˆo(2)
(k)

, ...) =

−ΣN
l=1o(l) + ΣN

l=1ln[o(l)]E{nl|ôk(l), i(1), i(2), ..., i(N)} + ln[p(o(1), o(2), ...)] =

−ΣN
l=1o(l) + ΣN

l=1ln[o(l)]ΣN
m=1

h(m − l)ôk(l)

(h ⊗ ôk)(m)
i(m) + ln[p(o(1), o(2), ...)]

(26)

The function Q(o(1), o(2), ...| ˆo(1)
(k)

, ˆo(2)
(k)

, ...) must now be maximized over o(1), o(2), ...

for the M-step. Using ∂Q/∂o(l) = 0 we get 0 = −1 + 1
o(l)

E{nl|ôk(l), i(1), i(2), ..., i(N)} +

∂ln[p(o(1),o(2),...)]
∂o(l)

. By isolating o(l) and substituting it with ôk+1(l) we get the next step estimate

ôk+1(l) =
ôk(l)ΣN

m=1
h(m−l)

(h⊗ôk)(m)
i(m)

1 + ∂ln[p(o(1),o(2),...)]
∂o(l)

(27)

where ∂ln[p(o(1),o(2),...)]
∂o(l)

is calculated at Eq. 20 in the previous subsection.

4.3 Algorithm

The a priori data term is an estimate of the true density and is not precise. more over it

is estimated iteratively with the algorithm progress. That is way we are not interested to

enforce this a priori data completely from the first iterations. For this purpose we use a

weight function ξ(k) that changes with iteration number. This function enable us to enforce

the a priori data gradually on the estimation.

1. ξ(k) = C1kτ

C2+kτ

2. o�(l) = ôk(l) + η(ôk(l) − ôk−1(l))
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3. ō(l) = o(k)(l) + 2η(o(k)(l) − o(k−1)(l))

4. Z(k)(l) = (2o�(l)−ō(l))
2σl

∑
t −1

2
Xlt

σt
(o�(t)−ō(t))+ Xll

2σ2
l
(o�(l)−ō(l))(3o�(l)−ō(l))+ln[o�(l)]+ 1

2σl
+1

5. ô(k+1)(l) =
ô(k)(l)ΣN

m=1
h(m−l)

(h⊗ôk)(m)
i(m)

1+ξ(k)Z(k)(l)

6. k=k+1.

7. Repeat 1–6 until |L(k+1)(o(1),o(2),...)−L(k)(o(1),o(2),...)|
L(k+1)(o(1),o(2),...)

< ε

where o�(l) is the a priori data estimate at iteration k, η ≈ 1 is the a priori data estimation

learning rate constant. For ξ(k) C1, C2 and τ are the weight function parameters that need

to be chosen arbitrarily. Optional choice could be C1 = 0.1, c2 = 100 and τ = 1. ō(l) is

the estimated mean of the a priori data probability density at voxel l and iteration k, and

Z(k)(l) is the a priori data derivative that was calculated at Eq. 20 for voxel l and iteration

k.

4.4 1D and 2D Simulation Results

Several simulations of different objects (smooth,sharp bright and sharp dim) were done both

for Maximum Likelihood estimation and for Maximum a posteriori estimation. The first

simulation was done on 1D objects sharp and smooth that can be seen in Fig. 15 and 16.

The Maximum likelihood algorithm results and the Maximum a posteriori algorithm results

are presented in Fig. 17, 19, 18 and 20.from these figures we can clearly see that although

the Maximum Likelihood estimation is sharper and more accurate for sharp specimens, it

also introduces artifacts to the image. Since the difference in the slope angle is minor, the

maximum a posteriori is better for such objects especially in medical applications where

artifacts can cause an unnecessary surgery operation. For the smooth object there is no

difference in the slope angle but there is more artifacts in the ML estimation, and the object

no longer looks smooth. We can derive another interesting information from the error figures

18 and 20. We can see that the MAP estimator is biassed and the error is always positive

while the ML estimator is not biassed. The reason for this bias in the MAP estimation is

the fact that the a priori knowledge we used for the estimation is not truly correct and it is

more smoothing constraint than true data. Because we really don’t know what the object
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intensity is (we want to find it), we don’t know what it’s probability density. We are claiming

that it is smooth and estimate it from neighboring voxels.

In all the cases Both ML estimation and MAP estimation are much better than the additive

deconvolution algorithm results. It is more sharp and although there is artifacts in the ML

estimate they are not worse than the artifacts in the additive deconvolution estimate.

The same conclusion are derived from the second simulation that was done on 2D objects,

both smooth, sharp dim and sharp bright. In Fig. 21, 22 and 23 the different objects and

system parameters are shown, and in Fig. 24, 25 and 26 the ML and MAP algorithm results

are shown. The artifacts in the ML estimate are very obvious in the smooth object Fig.

24, where a grid of dark and bright lines is seen all over the picture. For the sharp and

bright object it is obvious from Fig. 25 that the ML estimate achieves better results than

the MAP estimate. The object edges are clearer and sharper although the artifacts are still

present in the picture. for the sharp and dim object Fig. 26, neither algorithm achieve

good results. The MAP estimate is not sharp enough and the object is blurred into the

background. While in the ML estimate the object is sharp but it is swallowed up in the

artifacts at the background.
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Figure 15: system parameters for smooth object

Figure 16: system parameters for sharp object
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Figure 17: ML and MAP algorithm results for smooth object

Figure 18: ML and MAP algorithm results for sharp object
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Figure 19: ML and MAP algorithm results for smooth object

Figure 20: ML and MAP algorithm results for smooth object
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Figure 21: system parameters of smooth object

Figure 22: system parameters of sharp bright object
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Figure 23: system parameters of dim bright object
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Figure 24: ML and MAP algorithm results for smooth object
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Figure 25: ML and MAP algorithm results for sharp bright object
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Figure 26: ML and MAP algorithm results for sharp dim object
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4.5 Article Results

The likelihood algorithm was tested on both noiseless and noisy images. The first case

was the cross and the circle with equal strength and 200 nm apart. The results for this

case are shown in Fig. 27. As with the additive deconvolution, the likelihood algorithm

reduces the out of focus contributions to the planes immediately above and below the plane

where the object is. When compared with the additive deconvolution results, we can see

that 20 iterations of the likelihood algorithm results in better reduction of the out of focus

contributions than 40 iterations of the additive algorithm. We can also observe that the

ringing in the out of focus planes is less marked for the likelihood algorithm.

The algorithm was then tested with the same image corrupted with a signal dependent

poisson noise with SNR of 3.16 and 1. The results are shown in Fig. 28(left) and (right)

respectively. When the SNR was 3.16, the likelihood gave better reconstruction than the

additive deconvolution algorithm. For 20 iterations of the likelihood algorithm the out

of focus contributions are dimmer than those obtained after 40 iterations of the additive

algorithm. When the SNR was 1, the algorithm reduces the out of focus contributions but,

the noise was amplified at the same time and after 20 iterations it is not clear that the

reconstructed image is better than the recorded data.

The maximum likelihood was then applied to the case of a dim cross 200 nm above the circle.

Two imaging conditions were simulated noiseless and with poisson noise with SNR=3.16.

The results are shown in Fig. 29 (left) and (right) respectively. these results are showing us

again that the likelihood is performing better than the additive algorithm and also that the

artifacts are less severe.
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Figure 27: MAP algorithm results - without noise. simulated cross and circle of equal

intensity 200 nm apart, the optical slices where the cross and circle lays marked X and O

respectively. the columns from left to right are the recorded image and the reconstruction

after 5,10,20 iterations.
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Figure 28: MAP algorithm results - with poisson noise. simulated cross and circle of equal

intensity 200 nm apart, the optical slices where the cross and circle lays marked X and O

respectively. the columns from left to right are the recorded image and the reconstruction

after 5,10,20 iterations. Left: max SNR=3.16 Right: max SNR=1.
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Figure 29: MAP algorithm results - with and without noise. simulated cross and circle 200

nm apart, the optical slices where the cross and circle lays marked X and O respectively the

cross strength is 1/10 of the circle strength. the columns from left to right are the recorded

image and the reconstruction after 5,10,20 iterations. Left: without noise. Right: max

SNR=3.16
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5 Discussion

The Maximum likelihood and Maximum a posteriori algorithms has several advantages over

additive deconvolution. Even though each iteration of the formers takes about three times as

much as the latter, fewer iterations are required to achieve about the same resolution. Both

likelihood algorithms were observed to be more tolerant of noise and the MAP algorithm

produces less severe artifacts.

Further more, the article has considered only the idealized case of an infinitesimal detector

aperture. Such a configuration, while providing the highest prior resolution, also yields the

lowest prior SNR in practical situations. While opening the detector aperture to admit more

light improves the SNR, it is also admits more light from out of focus planes and degrades

the resolution. The detector aperture may be adjusted to achieve an optimum balance, from

the perspective of the post processor, thus tuning the microscope and the post processor as

a system.

Finally, since all the methods discussed in this paper are nonlinear, they can potentially

recover components of the specimen in the null space of the imaging operator.

6 Future work

The next step in reconstruction of volumetric data from optical sectioning by wide field or

confocal microscope is blind deconvolution. that is simultaneous reconstruction of object

and the point spread function. In this article it is assumed that the optical transfer function

of the microscope is known. The conventional methods to acquire the information about

the optical transfer function are: use a point source as the object and measure the point

spread function, or use an analytical formula like the one we developed in section 2 and

get the required lens parameters from the manufacturer. The limitation of the first method

is that it is very hard to produce a small enough source of light for this problem, because

the distances in this problem are very small to begin with. The limitation of the second

method is the fact that not always the required parameters are accurate enough and there

are variations between the manufacturer data and the actual lens. More over if you got the
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volumetric data from an unknown source you don’t have the information on the microscope

at all.

There was some work done on blind deconvolution of microscopic data by several researchers.

Holmes [7] used the EM algorithm for the estimation of both the point spread function

and the object. Markham and Conchello [8] suggested an integrated algorithm based on

parametric model for the point spread function and EM algorithm for the object. Carasso

[9] suggested another method that don’t assume smoothness of the object and summarized

some other methods as well.

7 Appendix A - proof for the EM algorithm conver-

gence

Theorem 1 (EM algorithm convergence). The sequence {θ̂(k) : k = 1, 2, ...} that defined by

the E and M steps corresponding to the sequence of incomplete data log likelihood {Lid(θ̂
(k)) :

k = 1, 2, ...} is nondecreasing.

Proof. For the proof of this problem not from ... and ... that for Z ∈ Z(Y ) there holds

ln[py(Y |θ)] = ln[pz(Z|θ)] − ln[pz|y(Z|Y, θ)] (28)

The left size of this equation is the incomplete data log likelihood, and the first term on

the right is the complete data log likelihood. Multiplying both sides by pz|y(Z|Y, θ̂(k)), and

integrating with respect to Z yields

Lid = Q(θ|θ̂(k)) −
∫
Z(Y )

pz|y(Z|Y, θ̂(k))ln[pz|y(Z|Y, θ)] dZ (29)

Evaluating Eq. 30 for both θ = θ̂(k+1) and θ = θ̂(k), and then subtracting, results in

Lid(θ̂
(k+1)) − Lid(θ̂

(k)) = Q(θ|θ̂(k+1)) − Q(θ|θ̂(k))−
∫
Z(Y )

pz|y(Z|Y, θ̂(k))ln

[
pz|y(Z|Y, θ̂(k+1))

pz|y(Z|Y, θ̂(k))

]
dZ

(30)
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Application of the inequality ln(x) ≤ x − 1, for which equality holds if and only if x = 1,

then yields

Lid(θ̂
(k+1)) − Lid(θ̂

(k)) ≥ Q(θ|θ̂(k+1)) − Q(θ|θ̂(k))−
∫
Z(Y )

pz|y(Z|Y, θ̂(k))

[
pz|y(Z|Y, θ̂(k+1))

pz|y(Z|Y, θ̂(k))
− 1

]
dZ = Q(θ|θ̂(k+1)) − Q(θ|θ̂(k))

(31)

with equality if and only if pz|y(Z|Y, θ̂(k+1)) = pz|y(Z|Y, θ̂(k)), which holds if θ̂(k+1) = θ̂(k).

The M-step ... implies that the right side of ... is nonnegative in general and equal to zero

if θ̂(k+1) = θ̂(k). Hence, Lid(θ̂
(k+1)) ≥ Lid(θ̂

(k)). which establishes the theorem.

�

8 Appendix B - calculating E{nl|ok(l), i(1), i(2), ..., i(N)}

Theorem 2 (conditional mean for histogram data). Let {N(A) : A ⊆ X} be a poisson

process with an integrable intensity function {λ(x) : x ∈ X}. Points of this process are

translated to the output space Y to form the output point process {N(B) : B ⊆ Y}, where each

point is independently translated according to the transition density p(y|x). Let {Y1,Y2, ...}
be disjoint sets in Y such that Y =

⋃∞
k=1 Yk. Define M(Yk) to be the number of points in Yk,

and let M = {M(Y1),M(Y2), ...} denote histogram data derived from points in the output

space. Then if there are no insertions and deletions, the conditional expectation E[N(A)|M ]

of the number of points in a subset A of the input space X given the histogram data M is

E[N(A)|M ] = Σ∞
k=1

[∫
Yk

∫
A

p(y|x)λ(x) dxdy∫
Yk

∫
X p(y|x)λ(x) dxdy

]
M(Yk) (32)

Proof. Let M(A;Yk) be the number of points in Yk that are translated from A. points in the

output space that are translated from the subset A of the input space form a Poisson process

on Y with intensity
∫

A
p(y|x)λ(x) dx. N(A) = Σ∞

k=1M(A;Yk), from which it follows that

E[N(A)|M(Y1),M(Y2)...] = Σ∞
k=1E[N(A,Yk)|M(Y1),M(Y2)...] (33)
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E[N(A,Yk)|M(Y1),M(Y2)...] = E[N(A,Yk)|M(Yk)] =

=
µ(A;Yk)

µ(A;Yk) + µ(Ac;Yk)
M(Yk)

(34)

where µ(A;Yk) = E[M(A;Yk)] =
∫
Yk

∫
A

p(y|x)λ(x) dxdy is the average number of points in

Yk that were translated from A, and µ(Ac;Yk) = E[M(Ac;Yk)] =
∫
Yk

∫
Ac p(y|x)λ(x) dxdy is

the average number of points in Yk that were translated from the complement Ac = X − A

of A. Substituting these expressions into Eq. 33 yields

E[N(A)|M(Y1),M(Y2)...] = Σ∞
k=1

[
µ(A;Yk)

µ(A;Yk) + µ(Ac;Yk)

]
M(Yk) (35)

which is Eq. 32

�

for our reconstruction problem: substitute N(A) with n(l), M(Yl) with o(k)(l), λ(l) with

o(l), and p(y|x) with h(m − l). Then µ(A;Yk) equals h(m − l)o(l) and Eq. 35 denominator

is equal to (h ⊗ o)(m) so we get Eq. 27.
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